Week 11 Term 1 2024

HAWKER COLLEGE Engage | Inspire | Achieve

By the end of this week, you should be able to:

- recognise anti-differentiation as the reverse of differentiation
- use the notation $\int f(x) dx$ for anti-derivatives or indefinite integrals
- establish and use the formula $\int x^n dx = \frac{1}{n+1}x^{n+1} + c$ for $n \neq -1$
 - establish and use the formula $\int e^x dx = e^x + c$
- establish and use the formulas $\int \sin x \, dx = -\cos x + c$ and $\int \cos x \, dx = \sin x + c$
- recognise and use linearity of anti-differentiation
- determine indefinite integrals of the form $\int f(ax + b)dx$
- identify families of curves with the same derivative function
- determine f(x), given f'(x)a and an initial condition f(a) = b
- determine displacement given velocity in linear motion problems.

Theoretical Components

Resources:

• Year 12 Maths Quest Methods Chapter 9

f(x)	$\int f(x) dx$
а	ax + c
ax^n	$\frac{ax^{n+1}}{n+1} + c$
$(ax+b)^n$	$\frac{(ax+b)^{n+1}}{a(n+1)} + c$
$\frac{1}{x}$	$\log_e \mathbf{x} + c$
$\frac{1}{ax+b}$	$\frac{1}{a}\log ax+b +c$
e ^x	$e^{x}+c$
e^{kx}	$\frac{e^{x} + c}{\frac{1}{k}e^{kx} + c}$
sin (ax)	$\frac{1}{a}\cos(ax) + c$
cos (ax)	$\frac{1}{a}\sin(ax) + c$

Read worked examples 1 to 9 on anti-differentiation. Read worked examples 10 to 12 on integrating special functions.

Practical Components

Complete the following questions. Organise your solutions neatly in your exercise book.

You will require Chapter 9 of Maths Quest Methods (pdf – Google Classroom).

Ex 9A: Antidifferentiation

- Q's 1(f,m,s), 2(c,f), 3, 4, 6, 11(a,e), 12

Ex 9B: Integration of e^x , sin x, and cos x

- Q's 1(a,p) 2, 4, 5, 6(a,j,w), 7(c,e), 12

$$\int [f(x) \pm g(x)] dx = \int f(x) dx \pm \int g(x) dx$$
$$\int kf(x) dx = k \int f(x) dx$$
$$\int g(x) dx = f(x) + c$$

Investigation

See other page.

Have a nice holidays! 🐵

There is a Cambridge Task to complete.

Goals

Investigation Week 11

Question 1.

Explain the **Fundamental Theorem of Calculus** in your own words. (What does this theorem mean to you, and how do we use it?) Use diagrams to assist in your explanation if you need.

Question 2.

- a) Draw the curves f(x) = x and $g(x) = x^2$ on the same axes and work out the intersection points.
- b) Plot the two curves on Desmos, and estimate the area between the intersection points. Each square is about 0.01 units^2 . Half a square is about 0.005 units^2 .
- c) Find *an* antiderivative (don't add the + C) of the two functions, F(x) and G(x), and then solve each for F(0) and G(0) as well as F(1) and G(1).

d) Evaluate the following: [F(1) - F(0)] - [G(1) - [G(0)]. What do you notice?